
Contents
1 Segments, Values, and Labels

1.1 Segment selection
1.2 Values (declaration in segments)
1.3 Labels

2 Addressing, Loading and Storing

2.1 Adressing operations
2.2 Load operations
2.3 Store operations

3 Simple Stack Operations
4 Arithmetic Operations

4.1 Integer operations
4.2 Floating point operations

5 Increment and Decrement Operations
6 Type Conversion Operations
7 Comparison Operations

7.1 Integer comparison instructions
7.2 Floating point comparison operator

8 Bitwise Operations
9 Rotation and Shift Operations
10 Function Definition

10.1 Starting a function
10.2 Leaving a function

11 Function Calls
12 Basic Jump Operations
13 Conditional Jump Operations
14 Other Operations

Postfix Reference Guide
From Wiki**3

The Postfix reference guide contains information about the structure and operations of the stack machine.

The original stack machine was created by Santos (2004). Is was composed by a set of macros to be used with printf functions.
Each macro would “take” as arguments, either a number or a string. This was a simple and effective approach but was limited
in its expressiveness.

The current postfix code generator class maintains the stack machine abstraction, but does not rely on macros. Instead, it
defines an interface to be used by semantic analysers, as defined by a strategy pattern (Gamma et al., 1995). Specific
implementations provide the realization of the postfix commands for a particular target machine. Since it is written in C++, it's
very easy to extend to new needs and implementations (new target machines).

Like the original postfix code generator, the current abstraction uses an architecture based on a stack machine, hence the
name "postfix", and three registers.

1. IP -- the instruction pointer -- indicates the position of the next instruction to be executed;
2. SP -- the stack pointer -- indicates the position of the element currently at the stack top;
3. FP -- the frame pointer -- indicates the position of the activation register of the function currently being executed.

In the following tables, the "stack" columns present the results of the actions on the values at the top of the stack. Note that
only elements relevant in a given context, i.e., that of the postfix instruction being executed, are shown. The notation #length
represents a set of length consecutive bytes in the stack, i.e., a vector.

OPERATION stack before stack after Description of actions

Consider the following fictitious example:

FAKE $ a #8 b $ a b This is a fake operation

In this example, before the FAKE operation, the stack had at its top b, followed by eight bytes, followed by a. After executing
the FAKE operation (which used those elements in some way), the stack has at its top b, followed by a. The symbol $ is used
to denote the point in the stack not affected by the current operation (this could be the top if the stack were empty).

The following groups of operations are available in the Postfix interface:

Segments, Values, and Labels
Segment selection
These operations select various segments. They do not affect the stack.

BSS Specifies/selects the data segment for uninitialized values

DATA Specifies/selects the data segment for initialized values

RODATA Specifies/selects the data segment for initialized constant values

TEXT Specifies/selects the text (code) segment (default)

TEXT name Specifies/selects the text (code) segment with name name

TEXT number Specifies/selects the text (code) segment with name number

Values (declaration in segments)
These operations declare values directly in various segments. They do not affect the stack.

SALLOC size Declares an uninitialized vector with length size (in bytes)

SSHORT value Declares a static 16-bit integer value

SBYTE value Declares a static 8-bit character value

SINT value Declares a static 32-bit integer value

SDOUBLE value Declares a static double precision (64-bit) floating point value

SFLOAT value Declares a static simple precision (32-bit) floating point value

SADDR name Declares a name for an address (i.e., declares the address associated with name)

SSTRING string Declares a static NULL-terminated character string (C-like) (may contain special

characters)

Labels
These operations handle symbols and their definitions within some segment. They do not affect the stack.

ALIGN Forces the alignment of code or data

LABEL name Generates a new label name

EXTERN name Declares name as a symbol externally defined, i.e., defined in another compilation

module

GLOBAL name,

type

Declares a name with a given type (see below) -- the declaration of a name must

preceed its definition

In a declaration common to several modules, any number of modules may contain common or external declarations, but only
one of them may contain an initialized declaration. A declaration does not need to be specified in a specific segment.

Global names may be of different types. These labels are to be used to generate the types needed for the second argument of
GLOBAL.

NONE - Unknown type
FUNC - Name/label corresponds to a function
OBJ - Name/label corresponds to an object (data)

Addressing, Loading and Storing
Absolute addressing uses addresses based on named labels. Local addressing is used in function frames and uses offsets
relative to the frame pointer to load data: negative addresses correspond to local variables, offset zero contains the previous
(saved) value of the frame pointer, offset 4 (32 bits) contains the previous (saved) value of the instruction pointer, and, after
offset 8, reside the function arguments.

Adressing operations

ADDR name $ $ name Absolute addressing: load address of name

ADDRA name $ value $ Absolute addressing: store value to name

ADDRV name $ $ [name] Absolute addressing: load value at name

LOCAL offset $ $ fp+offset Local addressing: load address of offset

LOCA offset $ a $ Local addressing: writes a to offset

LOCV offset $ $ [fp+offset] Local addressing: load value at offset

ADDRA, ADDRV, LOCA, LOCV are functionally equivalent to ADDR+STINT, ADDR+LDINT, LOCAL+STINT, LOCAL+LDINT, but
the generated code is more efficient. They are compound operations (i.e., they contain not only the addressing part, but also
the load/store part as well). Note that the postfix_writer visitor is, in general, incapable of generating these instructions.

Load operations
The load instructions assume that the top of the stack contains an address pointing to the data to be read. Each load instruction
will replace the address at the top of the stack with the contents of the position it points to. Load operations differ only in what
they load.

LDINT $ addr $ [addr] Loads 4 bytes (int)

LDFLOAT $ addr $ [addr] Loads 4 bytes (float)

LDDOUBLE $ addr $ [addr] Loads 8 bytes (double)

LDBYTE $ addr $ [addr] Loads 1 byte (char)

LDSHORT $ addr $ [addr] Loads 2 bytes (short)

Store operations
Store instructions assume the stack contains at the top the address where data is to be stored. That data is in the stack,
immediately after the address. Store instructions differ only in what they store.

STINT $ val addr $ Stores 4 bytes (int)

STFLOAT $ val addr $ Stores 4 bytes (float)

STDOUBLE $ val addr $ Stores 8 bytes (double)

STBYTE $ val addr $ Stores 1 byte (char)

STSHORT $ val addr $ Stores 2 bytes (short)

Simple Stack Operations

DUP32 $ a $ a a Duplicates the 32-bit value at the top of the stack

DUP64 $ a $ a a Duplicates the 64-bit value at the top of the stack

INT value $ $ value Pushes an integer value

FLOAT value $ $ value Pushes a 4-byte float value (single precision)

DOUBLE value $ $ value Pushes an 8-byte float value (double precision)

SP $ $ sp Pushes the value of the stack pointer

SWAP32 $ a b $ b a Swaps the two 32-bit values at the top of the stack

SWAP64 $ a b $ b a Swaps the two 64-bit values at the top of the stack

ALLOC $ bytes $ #bytes Allocates in the stack an array with size bytes. Since this operation alters the meaning

of offsets in the stack, care should be taken when local variables exist.

Arithmetic Operations
The arithmetic operations considered here apply to both signed and unsigned integer arguments, and to double precision
floating point arguments.

Integer operations

NEG $ a $ -a Negation (symmetric) of integer value

ADD $ a b $ a+b Integer sum of two integer values

SUB $ a b $ a-b Integer subtraction of two integer values

MUL $ a b $ a*b Integer multiplication of two integer values

DIV $ a b $ a/b Integer division of two integer values

MOD $ a b $ a%b Remainder of the integer division of two integer values

UDIV $ a b $ a/b Integer division of two natural (unsigned) integer values

UMOD $ a b $ a%b Remainder of the integer division of two natural (unsigned) integer values.

Floating point operations
These operations take double precision floating point operands.

DNEG $ a $ -a Negation (symmetric)

DADD $ a b $ a+b Sum

DSUB $ a b $ a-b Subtraction

DMUL $ a b $ a*b Multiplication

DDIV $ a b $ a/b Division

Increment and Decrement Operations

INCR delta $ address $ address Adds delta to the value at the address at the top of the stack, i.e. [address] becomes

[address]+delta

DECR delta $ address $ address Subtracts delta to the value at the address at the top of the stack, i.e. [address]

becomes [address]-delta

Type Conversion Operations
The following instructions perform type conversions. The conversions are from and to integers and simple and double precision
floating point values.

D2F $ d $ f Converts from double precision (64-bit) to single precision (32-bit) floating point

D2I $ d $ i Converts from double precision (64-bit) floating point to integer (32-bit)

F2D $ f $ d Converts from simple precision (32-bit) to double precision (64-bit) floating point

I2D $ i $ d Converts from integer (32-bit) to double precision (64-bit) floating point

Comparison Operations
Integer comparison instructions
The comparison instructions are binary operations that leave at the top of the stack 0 (zero) or 1 (one), depending on the result
of the comparison: respectively, false or true. The value may be directly used to perform conditional jumps (e.g., JZ, JNZ), that
use the value of the top of the stack instead of relying on special processor registers ("flags").

EQ $ a b $ a≡b equal to

NE $ a b $ a≠b not equal to

GT $ a b $ a>b greater than

GE $ a b $ a≥b greater than or equal to

LE $ a b $ a≤b less than or equal to

LT $ a b $ a<b less than

The following consider unsigned operands:

UGT $ a b $ a>b greater than for unsigned integers

UGE $ a b $ a≥b greater than or equal to for unsigned integers

ULE $ a b $ a≤b less than or equal to for unsigned integers

ULT $ a b $ a<b less than for unsigned integers

Floating point comparison operator
This operator compares two double precision floating point numbers. The result is an integer value: less than 0, if the first
operand is less than the second; 0, if they are equal; greater than 0, otherwise.

DCMP $ a b $ i "compare" -- i<0, a<b; i≡0, a≡b; i>0, a>b

Bitwise Operations

NOT $ a $ ~a Bitwise negation, i.e., one's complement

AND $ a b $ a∧b Bitwise AND operation

OR $ a b $ a∨b Bitwise OR operation

XOR $ a b $ a⊕b Bitwise XOR (exclusive OR) operation

Rotation and Shift Operations
Shift and rotation operations have as maximum value the number of bits of the underlying processor register (32 bits in a ix86-
family processor). Safe operation for values above that limit is not guaranteed.

ROTL $ value nbits $ value<rl>bits Rotate value nbits to the left

ROTR $ value nbits $ value<rr>bits Rotate value nbits to the right

SHTL $ value nbits $ value<<bits Shift value nbits to the left

SHTRU $ value nbits $ value>>bits Shift value nbits to the right (unsigned)

SHTRS $ value nbits $ value>>>bits Shift value nbits to the right (signed)

Function Definition
The following sections cover defining and calling functions.

Starting a function
Each function must allocate space for its local variables. This is done immediately after being called and before any other
processing. The relevant operations are ENTER (to specify a given memory amount) and START (no space is reserved for
local variables. Note that these operations do more than manipulate the stack: they also create an activation register for the
function, i.e., they update the frame pointer and define a new stack frame.

ENTER bytes $ $ fp #bytes Starts a function: pushes the frame pointer (activation register) to the stack and

allocates space for local variables (bytes)

START $ $ fp Equivalent to "ENTER 0"

Leaving a function
STFVAL32 or STFVAL64 may be called to specify return values in accordance with C conventions. Only return values that fit in
these registers need these operations. Other return values are passed by pointer.

Note that these operations make use of specific hardware registers (STFVAL32->eax, STFVAL64->st0).

STFVAL32 $ a $ Removes a 32-bit integer value from the stack (to eax)

STFVAL64 $ d $ Removes a double precision (64-bit) floating point value from the stack (to st0)

The stack frame is destroyed by the LEAVE operation. This action must be performed immediately before returning control to
the caller (with RET).

LEAVE $ fp ... $ Ends a function: restores the frame pointer (activation register) and destroys the

function-local stack data

After the function's stack frame is destroyed and the activation register is restored to the caller, control must also be returned to
the caller (i.e., IP must be updated).

RET $ addr $ Returns from a function (the stack must contain the return address)

RETN bytes $ #bytes addr $ Returns from a function and removes bytes from the caller's stack after removing the

return address. This is more or less the same as "RET+TRASH bytes". Note that this
is not compatible with the Cdecl calling conventions.

Function Calls
In a stack machine the arguments for a function call are already in the stack. Thus, it is not necessary to put them there (it is
enough not to remove them).

CALL name $ $ return-

address

Calls the named function. The return-address is pushed to the stack.

BRANCH $ address $ return-

address

Invokes a function at the address indicated at the top of the stack. The return-

address is pushed to the stack.

When building functions that conform to the C calling convention, the arguments are destroyed by the caller, after the return of
the callee, using TRASH and stating the total size (i.e., for all arguments).

TRASH bytes $ #bytes $ Removes bytes from the stack

To recover the returned value by the callee, the caller must call LDFVAL32, to put the value in eax in the stack. An analogous
procedure is valid for LDFVAL64 (for double precision floating point return values -- value comes from st0).

LDFVAL32 $ $ value Pushes the return value in the eax register to the stack

LDFVAL64 $ $ value Pushes the return value in the st0 register to the stack

Basic Jump Operations

JMP label $ $ Unconditional jump to label (does not affect or use the stack)

LEAP $ address $ Unconditional jump to the address at the top of the stack

Conditional Jump Operations

JZ label $ value $ Jump to label if the value at the top of the stack is 0 (zero)

JNZ label $ value $ Jump to label if the value at the top of the stack is non-zero

The following operations combine comparisons and jumps.

JEQ label $ a b $ Jump to label if a≡b

JNE label $ a b $ Jump to label if a≠b

JGT label $ a b $ Jump to label if a>b

JGE label $ a b $ Jump to label if a≥b

JLE label $ a b $ Jump to label if a≤b

JLT label $ a b $ Jump to label if a<b

The following are for the unsigned versions of the comparisons.

JUGT label $ a b $ Jump to label if a>b (unsigned)

JUGE label $ a b $ Jump to label if a≥b (unsigned)

JULE label $ a b $ Jump to label if a≤b (unsigned)

JULT label $ a b $ Jump to label if a<b (unsigned)

Other Operations

NIL No action is performed

NOP Generates a null operation (consumes time; does not change the processor's state)

Categories: Compiladores Ensino

https://web.tecnico.ulisboa.pt/~david.matos/w/pt/index.php/Special:Categories
https://web.tecnico.ulisboa.pt/~david.matos/w/pt/index.php/Category:Compiladores
https://web.tecnico.ulisboa.pt/~david.matos/w/pt/index.php/Category:Ensino

